84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Software Specifications

System Control CSCI
Redundancy Management CSC
Thor 3.0
DP-3

Checkout and Launch Control System (CLCYS)

84K 00570-130

Approval:

Chi ef , System Sof t war e Dat e Dat e
Di vi si on

Dat e Dat e

Dat e Dat e

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Prepared By:

M chael Synmes 06/ 19/ 1998

NOTE: See “ Supporting Docunent Note” on following page

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

REVISION HISTORY

REV DESCRIPTION DATE
Basic Promoted per approval by Design Panel. ljp 5/15/98
A Promoted per approval by Design Panel. ljp 7/7/98

Supporting Document Note:
Acronyns and definitions of many conmon CLCS terns may be found in the

foll owi ng docunents: CLCS Acronyns 84K00240 and CLCS Project d ossary
84K00250.

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Table of Contents

1.1 REDUNDANCY MANAGEMENT DESIGN SPECIFICATION ...cccuiiiirieirieiieeesireesireesreessneeessreesseesneessnnessanes 6
0 R < o 111 [Y 6
112 SYSEOM I INEEOITY . c.eeeteeeeet ettt ettt ettt sb e bt b e sb e b e e sbe e sbe e b et nne e nne et nn e 6

1121 System Integrity Detailed Data FlOWcoooiiiiiiiieeie et e 7
1122 System Integrity CONtEXt DIAQIaM.c.coiuiiiieeitieeiee ettt ee st e stee et et e eeesaeeesbeeabeessaeeesneeenneas 9
1123 System Integrity State Definition and State Transition Diagram............cceeeceeiieenieeiee e 9
1124 System Integrity Unique AlQOrithm DESIGN.c.eeiiiiiiieiie ettt 9
1125 System Integrity DevelOpment TOOIS.......cc.oi it e e 9
1.12.6 System Integrity EXternal INErfaCeSccei i 9
1.1.27 System INtegrity Data DiCtiONArY........cccuieieieieeeiee ittt et et eesee e e aeesneeesseeesaeeeeneeanneas 9
1.1.2.8 System INtegrity MeSSage FOMMELScooitiiiiieiiee ettt ee et et see et e e eeeseaeesaeeeteeeneeeeneeanneas 9
1129 System Integrity DiSplay FOMMELS.c.cooiuiiiiee ettt et e e e saee et e e saeeesneeanneas 9
11210 System INtegrity INPUL FOMMIELS..........ei ittt ettt e st eee e et e aeeesneeesseeenaeeeneas 9
11211 System Integrity RECOIEA DAccoueeiiieiiieiee ettt ee et et eesteeseeesseeanebeesaneens 10
11212 System Integrity Local Storage Requirements and FOrMEtScccoeeriieeiieeiee e 10
11213 System INtegrity Printer FOMMELSoooeiiieiii ettt s e e sneeeeeesneeesaeeens 10
11214 System Integrity Interprocess Communications (C-to-C CommuniCations)c.ceevevverreervereennnes 10
11215 System Integrity External Interface Calls (e.g., API Calling FOrmats)ccccoovvreeninieeneneennennns 10
11216 System Integrity Table FOMMELS..........ooiiiiiiiie ettt e e e e aeesaneens 10
113 SUDSYSIEM INEEGIILY . .eeeieeeieeeieee ittt ettt r e r e b e esneeneeneenneens 10
1131 Subsystem Integrity Detailed Data FlOWcooeiiiiiiiiiiice e 11
1.1.3.2 Subsystem Integrity CONEXT DIiagram.........cooueeiueeeieeaiee e etieeieeeeeeseeeesteesteeseeesteeeteeseeesneeeeneeeanes 13
1.1.3.3 Subsystem Integrity State Definition and State Transition Diagramcceveeeieeeieenieenee e 14
1.1.3.4 Subsystem Integrity Unique AlQOrithm DESIQNcooueiiiiiiiee et 16
1.1.35 Subsystem Integrity Devel OpmMENt TOOIS..........eiiiiiiiieiee ettt e et e e e eees 16
1.1.3.6 Subsystem Integrity EXterna INtErfaceS.o iiiiiii it 17
1.1.3.7 Subsystem Integrity Data DiCliONAIY..........cccooeeiueriieeieeeiee st e eteeeiee e e saeeeseeeeeeeseeeesseeasseeenneeenseesnns
1.1.3.8 Subsystem Integrity MeSSAge FOMMELSccouiriiieiii et stee et e e e et e eeesneeeenaeeenes
1.1.39 Subsystem Integrity DiSplay FOIMELS..........cooouiiiiiiiieeiee et se ettt et e et e e e snneeeneeeeees
11310 Subsystem Integrity INPUE FOMEESoiiiiiieeee et e e e e eneeeas
11311 Subsystem Integrity Recorded Data
11312 Subsystem Integrity Local Storage Requirements and FOrMELScocvevvireerieieneenene e 17
11313 Subsystem Integrity Printer FOMMELS.ooie it sae e 17
11314 Subsystem Integrity Interprocess Communications (C-to-C CommuniCations)cocvreerereenne. 17
11315 Subsystem Integrity External Interface Calls (e.g., APl Calling Formats)...........ccccceeveennene. 17
11316 Subsystem Integrity TAble FOrMALScoviiiiiiiiie et 28
114 COMPULET TIEEOITTY ..eeiveeiteeiteeitieiteestee st st ettt st e st e sttt sb e sbeesbeesbeesbeesbeesbeesbeesbeesbeesneereenreenee 28
1141 Computer Integrity Detailed Data FIOWccooiiiiiiiiie e e 29
1142 Computer Integrity CONtEXt DIAOIaIM......cccuei e ittt se e saee et e s e e seeeesteeaeeesneeeenneeenes 30
1.14.3 Computer Integrity State Definition and State Transition Diagram.........ccoeceeveeeieenieesiee e 30
1.14.4 Computer Integrity Unique Algorithm DESIQN.coceiiiiiiie ettt 31
1145 Computer Integrity DevelOpmeNnt TOOIS......ccouii et 31
1146 Computer Integrity EXternal INEErfateScooiii it 31
1147 Computer Integrity Data DiCtiONGIYcooeeeieriieeiieereeeee sttt et se e see e e sbeesnbeesaeeesaeeeneeeenseeeees
1.14.8 Computer Integrity MeSSa08 FOMMELScoiiieiiieiie ettt ae e e e seeeeneeeenaeeenes
1149 Computer Integrity DiSplay FOMMALS.ooeiiiiiiiieiee ettt e e e eenaeeenes
1.1.4.10 Computer INtegrity INPUE FOMMIALS.oouvieiieeeie et sie et ee et e et e teasaeeesreeeneeesnneens
11411 Computer Integrity Recorded Data
11412 Computer Integrity Local Storage Requirements and FOrmMatS..........ccooveevvreeieeieneesenee e 31
1.14.13 Computer INtegrity Printer FOMMELScoooiiiiieee et stee e e e e e saeeens 31
11414 Computer Integrity Interprocess Communications (C-to-C CoOmmuNiCations)c.ccevvreereneenne. 31
1.14.15 Computer Integrity External Interface Calls (e.g., API Calling FOrmats)ccccooevireerenvennennnn. 32
1.14.16 Computer Integrity Table FOMMELS.........c.oi it e e eesane e
115 System Configuration TaIe..........oouiiiiiii i
1.151 System Configuration Table Detailed Data Flow
1152 System Configuration Table ContexXt DIagramccceieieieriiiee et
1.153 System Configuration Table State Definition and State Transition Diagram..........cccoeeeevreeneeceneennens 33
1.1.54 System Configuration Table Unique Algorithm DESIGNcccivrviieerineineese e 33

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1155 System Configuration Table Devel Opment TOOIScooiueiiiieriiee it 33
1.156 System Configuration Table Externd Interfaces
1.15.7 System Configuration Table Data DiCliONaIYc.ceeieerrereeririreseesresee e e
1158 System Configuration Table MeSSage FOrMELS.........ccooieriiiriiee e
1.1.59 System Configuration Table Display FOrMaLS.........cceeiireiieeninie e
1.15.10 System Configuration Table INPUE FOMMIELS........cccueiiiieie et e e
11511 System Configuration Table RECOrded Data...........ccoieeiieriiieiie et
11512 System Configuration Table Local Storage Requirements and Formats
11513 System Configuration Table Printer Formats

11514 System Configuration Table Interprocess Communications (C-to-C Communications)................... 35
11515 System Configuration Table Externa Interface Cals (e.g., API Calling Formats)...........ccccccovenenne. 40
1.15.16 System Configuration Table Table FOrMEaLScoeiiiriiiei e 42
00 G O =1] (o RO SR U RRN 47
1.1.6.1 SCT Build DEEI €0 DA FIOWc..oveiiiiiiieeieeee ettt 48
1.16.2 SCT Build System Context DIaQram.........c.cceueeieeeieeeieeeiee e esieesieesaeesseeesseesaeesseeesseeaseesneeesnsessnns 48
1.16.3 SCT Build State Definition and State Transition Diagraimc.cceeeieeeiirnieenieesee e 48
1.16.4 SCT Build Unique AlQOrthmM DESIGNccueiiieeiieeiie ettt ettt e e e e e et e sneeeenneesnes 48
1165 SCT Build Devel OpMENt TOOIS.c.etiiieiiee it et eiee et eeeeetee et e ee st e et e aseeesaeeesteeeseeaneeeanneeenneeanns 48
1.1.6.6 SCT Build EXENal INTEITACES.......cceieeiieieiieeite e 49
1.1.6.7 SCT BUIlA DA DICLIONAIY.ceitieiiieitiieiee ettt sttt e et eseaeesaeeesteesaseesnseesseeaneeeseeenseeanns 49
1.1.6.8 SCT BUild MESSAgE FOMMELSeeeieeietiieiee ettt et et et eesaeeessee e eeeeneeesaeeenneeanseeeneeenneennns 49
1.1.6.9 SCT BuUild DiSplay FOMMELS..........oeieiiiiieiee ittt ettt s e et e e eeesaeeesteeeseeanseeeneeenneeanes 49
1.16.10 SCT BUIld INPUL FOIMELS ...ttt e et et e e te e e te e e eeesneeesseeareesnneenns 50
11611 SCT BUil0d RECOIABA DELA. ...ttt sttt sttt e ne s e 50
1.16.12 SCT Build Local Storage Requirements and FOMMEES............ooieieieriiee et 50
1.16.13 SCT BUIlA PrNLEr FOMMELS........ceiveeiiiieeitieie ettt 50
11614 SCT Build Interprocess Communications (C-to-C ComMmUNICALIONS)ccverveerrerreesrereenreseennennens 50
1.16.15 SCT Build External Interface Calls (e.g., APl Calling FOrMats)c.cveovvreenineeneneeeseese e 50
1.1.6.16 SCT BUIld TaDIE FOMMIALS. ...ttt 50
117 Redundancy Management TESE PLan ..o 50
1171 TESEENVIFONMENT.....coitiiiiiiesieeiee ettt sr et s s e r e sn e s b e e n e e e e s r e e neenneesnenneennennnens 50
LL17.2 TESE TO0IS. ettt bbbkt bbbt bbb bbbt e R e e b e e Rt e R e e bt e b e e bt e he e bt e bt e bt e bt ebeereene e 50
LL17.3 OO P 8N bbb bbb R bR b b e he et a e ae et bt reene e 50
0 [0 1 1 = O TSP OT ST PPRP TR 51
121 SYSEEMEVENT COUES......c.ueetieieeie ettt ettt ettt ettt ettt et b e bbbt e b e e b e e beenbe e e e nne e 51
122 ThOr ProCess TaBIE.........o ot 52
123 MESSAGE STACK. ... ettt ettt ettt ettt et b e bbb e re b nre e 52

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

11 Redundancy Management Design Specification

As discussed above, the Redundancy Management CSC consists of 6 major parts. Each of these partsis discussed
separately below. For Thor 3.0, only the sectionsregarding Subsystem Integrity are the focus of this document. In
an effort to convert to the current CLCS DP3 template, many of the sections within this document outside the scope
of thisdiscussion simply state TBD. It isnot the intention of this document to present that information. Information
relevant to those sections outside the scope of Thor 3.0 will be provided during the Atlas delivery.

1.1.1 Set Integrity
Set Integrity isnot provided in Thor.

1.1.2 System Integrity

System Integrity’'s role is to monitor data about the current state of the system and its parts, and based on that
information determine whether the system is healthigen a failure is detected, S determines the appropriate

recovery action. Sl consists of four parts: the first is resident on the Master CCP and is the part generally referred to
as Sl or Sl Master. This part of SI contains the logic to determine that a failure has occurred and what recovery
action is appropriate. The second is a Health Count Monitor that resides on the DDP. A key factor in the health of a
computer is its ability to periodically send a health counter FD. This FD is initaiyved at the DDP, then

distributed to all other computers. The latency of data to the CCP can be as much as 2 SSRs. In order to meet
performance requirements, detection of a missed health counter must take place on the DDP prior to the distribution.
The Health Count Monitor executes periodically to ensure that all health counters havecbeed r If any have

not been received, the Health Count Monitor issues a Missed Health Counter SEC to Sl on the Master CCP. The
third part is referred to as Mini-Sl and resides with the Master SCT prior to initialization of the Master CCP. In

order to change the set configuration prior to initialization of the Master CCP and DDP, the Master SCT must be
modifiable prior to initialization of the Master CCP. The Redundancy Management initialization process allows the
Master SCT to execute on any computer. Because Sl supplies all maodifications to the SCT, a small version of SI
must be able to run on other computers as well. This is a simplified Sl. It does no analysis or recovery, but is able
to process CCWS initiated configuration changes and is able to process SECs from other computers. Finally, a
small layer of SI must reside on the Master CCWS to process API invocations from the System Status Viewer and
other software able to request SCT changes. This API layer receives the procedure call and forwards the request to
either Mini-Sl or Sl at the Master CCP, whichever is active.

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1121 System Integrity Detailed Data Flow

Subsystem

Integrity] ‘
System Event Codes, Recovery SECs (master only)

Subsystem Heath FDs ‘
System Configuration Requests

S| Master/
Mini-SlI

Health Count HC/Packet FDs
I —

Monitor

System Messages
HC FDs

Missed Packets

| v

System Message
DDP Viewer
SCT Updates
SI API
——Configuration Change SECs—

*

Configuration Change Requests

System Status
Viewer

SCT

Figure 1. Sl Detailed Data Flow

Inputsto SI Master or Mini-Sl:

e System Event Codes: These event codes are messages generated by Subsystem Integrity that serve as
the primary information source for Sl decisions. There aretwo general classes of these SECs:

» State Changes: Asasubsystem completesinitialization, it passes through a series of states (In
configuration, Loaded, Communicating, Go). Asit enters each state, a System Event Codeis
generated to inform Sl that it has achieved the state. Sl then incorporates that information into the
master SCT. If asubsystem fails, or is directed to terminate, it also sends SECs, if able to notify S| of
the movement into alower state. Because many failure modes will not allow these SECs to be issued,
Sl does not rely on them for information, but uses them if available.

e Error Reports: These error reports are generated by the Health Count Monitor, and are used to inform
Master Sl that the Health Count Monitor has detected either amissing HC, or a HC that has an
unexpected value.

» Subsystem Health FDs: These FDs contain specific health information data, usually performance
related that can be used by Sl to infer information about the health of the box. Thor constraint: These
FDs are not used in health determination, but error related FDs are relayed as System Messages to
allow natification of unexpected events.

e System Configuration Requests: The SI API generates the requests to modify the configuration. This
typically occurs prior to initialization of the test set, but al so occurs when manually reconfiguring
around afailed piece of hardware, or to activate hardware that was allocated to the test set, but not
initidly used. Sl does some sanity checking to ensure the request is valid, then updates the SCT to
reflect the requested change.

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Outputs from S| Master or Mini-Sl:
e SCT Updates: Any modificationsto the system configuration are recorded through callsto the SCT
interface. By definition, the Master SCT is the copy of the SCT that resides on the same computer as
Mini-Sl or SI Master. The Magter SCT then propagates these updates to all copies of the SCT.
Outputsfrom S| Master:
* Recovery Sysem Event Codes: These messages direct subsystems to switch, terminate or take other
recovery actions.
e System Messages: These user messages allow the operations team to track eventsin the system.
Inputs to the Health Count Monitor:
e HCFDs: These FDsare generated cyclically by Subsystem Integrity in all subsystemsin al roles
(active, standby, spare). An incremented health counter indicates the subsystem believesit is healthy.
A decremented health counter indicates the subsystem believesit is not healthy. An unchanged health
counter indicates that an update was not received. Any unexpected valueresultsin a SEC to SI Magter
to notify it of the failure.
* Missed Packet Natification: Health Count Monitor provides an API to the DDP CSCI so that it can
notify Sl of amissed packet. Thislocal procedure call on the part of the DDP CSCI resultsin an SEC
being sent by Health Count Monitor to Master S.
Outputs from Health Count Monitor:
e System Event Codes: These messagesto Master Sl inform it that a health counter was not received or
contained an unexpected value, or that an expected packet was not received.
Inputsto Sl API:
* Reguestsfor configuration changes: These invocations of the local API are made by the System Status
Viewer as part of theinitial configuration of thetest set. It allows re-allocating subsystems to
resources or activating resources that were all ocated to the test set, but are not yet in use by the test set.
It also provides an interface of users to manually invoke switchover or termination.
Outputsfrom Sl API:
» Configuration Change Requests: These messages relay the requests made by the usersto either Sl
Master or Mini-Sl..

11211 Checking Health Counters

Health Counters arereceived for each computer in the system. The exact method of receipt varies by computer type.
All Health Counter checking takes place on the DDP.

1.1.2111 Gateways
The DDP expects data periodically from the gateways, and notifies SI on the Master CCP viaa Missed Packet

System Event Code when a packet isnot received. Each of these packets should contain a Health Counter FD in
them, Health Count Monitor ensures that they arereceived and incremented.

112112 CCPs and DDPs

Health Counter FDs are generated for the CCPs and DDPs. The Data Distribution SSR process invokes the HC
Check software once each iteration. This software checks the current values of CCP and DDP FDs against expected
values. Any discrepancies arereported to SI on the master CCP viathe HC Did Not Increment or HC Decremented
SECs.

The periodic check under an exigting process minimizes the CPU required for this high frequency operation.
However, there isno apparent difference between amissed CCP/DDP HC and a CCP/DDP HC that was sent, but
did not increment. The design of HC generation is such that sending a HC that has not changed should never occur.

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

11.21.13 CCWSs

CCWS HC monitoring also occurs at the DDP, and uses the same general techniques as the CCPs and DDPs.
However, the health check for CCWSsisat the DSR rather than at the SSR. Given the lower frequency and lower
priority, this check isin its own process.

1.1.21.2 Handling System Event Codes

Sl Master receives SECs directly from Reliable Messaging through alocal queue. The System Event Code handler
is a standal one process that suspends on the Reliable Messaging queue. When a SEC isreceived, it isprocessed
immediately. Because thereisatight deadline on this aperiodic process, its priority is equivalent to that of a 10ms
cyclic process. A SEC that notifies Sl of a state changeis used to update the SCT. Sl generates a System Message
to notify the user community of the state change. Error reports also generate System Messages.

Sgnificant additional handling of events and error recovery provided in Atlas.

1122 System Integrity Context Diagram
TBD

1123 System Integrity State Definition and State Transition Diagram
TBD

1124 System Integrity Unique Algorithm Design
TBD

1.1.25 System Integrity Development Tools
TBD

1.1.2.6 System Integrity External Interfaces
System Integrity generates no System Messages. Subsystem state change messages are generated out of the SCT.

1.1.2.7 System Integrity Data Dictionary
TBD

1.1.2.8 System Integrity Message Formats
TBD

1.1.29 System Integrity Display Formats
System Integrity owns no displays

1.1.2.10 System Integrity Input Formats
System Integrity receives the following System Event Codes:

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Tablel. System Event Codes

SEC Number Name Sour ce Destination
256 Subsystem L oaded SSl Sl (Master SCT)
257 Subsystem Communicating | SS| Sl (Master SCT)
258 Subsystem Go SSl Sl (Master SCT)
259 Subsystem NoGo SSl Sl (Master SCT)
260 Not Communicating
261 Subsystem Not Loaded SSl Sl (Master SCT)
393 Subsystem running ORT SS S
394 Subsystem not running SSl Sl (Master SCT)
ORT
395 No Packet Received from | SI-DDP SI-CCP
GW
396 Standby GSE detectedno | GSEnS S
poll from Active GSE
397 GSE reports no response GSEnA g
from bus
398 HC not Incremented SI-DDP SI-CCP
399 HC has Decremented SI-DDP SI-CCP
Additiona - to be defined User requested SI-AP SI-CCP
during implementation configuration changes

11211 System Integrity Recorded Data
System Integrity records no data other than that automatically recorded through RM.

1.1.2.12 System Integrity Local Storage Requirements and Formats
TBD

1.1.2.13 System Integrity Printer Formats
System Integrity produces no printed data

1.1.2.14 System Integrity Interprocess Communications (C-to-C Communications)
All Sl interprocess communications are through SECs as defined above.

1.1.2.15 System Integrity External Interface Calls (e.g., API Calling Formats)

An API isprovided to allow the System Status Viewer to request configuration changes. This APl isavailable at
http://mww-clcs/project/syscontrol /redman/ClassList.html

1.1.2.16 System Integrity Table Formats
System Integrity uses no files.

1.1.3 Subsystem Integrity

10

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Subsystem Integrity (SSI) executesin each CCP, DDP, CCWS and monitors the health of the subsystem. A similar
SSl alsoresidesin each of the gateways, however it isnot part of this CSC and istherefore not represented within
this document. SSI reports this health, and any subsystem state changes to System Integrity. The primary SSl to S|
communication path isthe Health Counter FD. SSI analyzes data availableto it about the subsystem health, then
sends either ahealthy health counter (incremented) or an unhealthy health counter (decremented). S also responds
to control directivesissued by S.

Subsyetem
Integ rity

S5 IP rocassHeartCyzlic S5 IProc=zsErmor S5 IProeszRegictar SEISubeysteam RedManHeathCountF D RedManF oo

S5 P roc2ss Hearb®oyclic

Figure 2. Subsystem Integrity Classes

Subsystem Integrity is composed of the following classes:

e SSIProcessHeartCyclic: Thisclassisthelocal heath counter that ensures each processis executing
correctly.

* SSIProcessHeartAcyclic: Thisclassisthelocal health counter that ensures each processis executing
correctly.

e SSIProcessError: This class provides the interface and processing for individual errorsthat occur
during process execution.

» SSIProcessRegister: This class provides the registration capabilities for a processto be formally
registered. It contains data or pointersto data concerning the registration status of a process.

e SSISubsystem: Thisclassisan extension of the readable class used by the SCT. It providesa
mechanism for the SSI to track its own state, and for OPS/CM to request the transition to the Loaded,
Comm, and Go states.

* RedManHealthCountFD: This classis for the Application Health Counter FD. It provides a
mechanism for SS| to report itshealth, as determined by SSI, to Sl.

« RedManProcess. Thisclassisaso an extenson of the class defined by the SCT. It contains data or
pointers to data concerning the health and criticality of individual processesin the subsystem.

1.1.31 Subsystem Integrity Detailed Data Flow

Startup interactions between Sl and the Ops/CM Server are shown in Figure 3. Ops CM Server initiates the
processes in the subsystem. Early in the startup sequence, Ops'CM |oads the Redundancy Management Software.
As part of itsloading, Redundancy Management |loads the SCT into shared memory and activates all Redundancy
Management processes including a high priority 100 Hz process on the CCP and the DDP or 10 Hz process on the
CCWS that monitorsits subsystem health. Contral isthen returned to Ops CM Manager. Ops/CM Manager
continuesregistering and loading the other System Software. When all software has been registered and |oaded,
Ops/CM Manager invokes the Subsystem.Load method on the My subsystem from the SCT. Thismarks|ocal data,

11

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

not visible through the API, as OPS/CM Loaded. At its next cycle, the SSI process checks the state and determines
it has changed. A gtate transition isreguested by issuing the Subsystem Loaded SEC to SI. Assuming Sl agrees with
therequest, the SCT will be updated. SSI then begins sending the Health Counter FD as part of its 100 Hz process.
This should eventualy be reflected in the SCT as atrandgtion to the Communicating state. At some later point, when
all System Software is executing, the same sequence of events occurs to move the subsystem to the Go state.

Construct SCT ———————

— =T Construction Complete

Fedister Procesze g
Load =
lp——————Check State
Subsystem Loaded SEC ———mw
Camim I
——Check State
50 I
———Check State—————— Heslth Count FD (cyclic)
o SEC ’
OP=IChM Subsystem =5l =l

Figure 3. OPS/CM SSI Interactions

Figure 4 shows the typical interactions between an cyclic application process and Subsystem Integrity. Acyclic
interactions between SS| and S| areidentical to the cyclic operations with the exception that if the BeatEnd is
specified, SSI checks for the PID rather than the heartbeat at its next scheduled health check. At an application-
specified rate, the Application Process invokes the appropriate process heartbeat method. This updates the shared
memory Heartbeat for the process. Periodically, at 10msintervals (100ms for 10 Hz SSl), the SSI process checks
for those heartbeats that should have arrived in thelast cycle (not al of them). If all expected have been received, as
well ashaving met additional health criteria as specified by SSl, it then increments the subsystem health counter and
sendsit to Sl viathe Health Counter FD. If at some point an expected heartbest is not received from a process
marked as essential in the SCT, SSI decrements the health counter ingtead of incrementing it and sendsit onto Sl.
Any Process failure resultsin the generation of a Process Running FD with the appropriate state set.

12

84K00570-130

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

Beat
>
CheckHealth Send
¢ en
(No Beat) > HC FD
—>
CheckHealth
< Send
p{ HC FD (dec)
Application SSIProcessHeartCyclic SSI HC FD Sl
‘Process
Figure4. Application-SSI Interactions
1.1.3.2 Subsystem Integrity Context Diagram

Revison: A
July 8, 1998

SSI haslimited visibility directly with the system. All APIs, with the exception of SSISubsystem, communicate
through shared memory. SSI does communicate with FD Services (FDs), System Services (SECs), Syetem Message
Services (Process Error Messages). Refer to Figure 5 for the system context of SSI.

System Mezsages m

Applications | Heartheats
Process Errars 2% APz ——
Registrations Integrity
Application “
Registration 4J
Service
SCT Updates
System Event Codes
i i Zubzystem Health FDz
Registrations]
e Hearthests — ¥ System Config. Reguetst
=CT Process Errors I Recovery SECs
N [master anly)
Zl Masters
hini- 1

Figure 5 SSI Context Diagram

13

|

Process Errars

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.33 Subsystem Integrity State Definition and State Transition Diagram

One of the mechanisms by which SS| tracks the current health of a process is through the process states. As part of
theregular subsystem health check at the DSR or SSR rate, subsystem cycl es through each of the processes
allocated to its process container, and queries each of its processes as to their health. In an effort to increase the
efficiency of thispoll and reduce the time required to exhaust the container, only registered processes are to be
scanned. Once aprocessisregistered, either formally or informally, as described in theregistration and heartbeat
API definitionsin this document, it isthen placed within the appropriate subsystem process container and its stateis
locally transitioned to aregistered state. Once registered, theinformation is sent to the Master SCT, whereitis
published globally. All process state information is maintained globally in the SCT. When polled for itshedth, a
registered process can be in one of severd states. A description of the possible states and how they are determined
is defined below.

* Not Registered: A processis by default in this gate. No action occurs as aresult of this ate

* Registered: A processistransitioned into this state when it is either formally or informally registered. A
process running FD, with theregistered state set, is sent out aswell as a process name FD isissued with the
corresponding process number as determined by theregistration. Sl sends out the FDs.

* Running: Once a process provides itsfirst heartbeat or resumes anormal heartbedt, it transtionsinto this
state. Sl issuesa process running FD, with the running state set.

e Stopped: Should a processfail to provide at least one heartbeat within its specified period and the process
exigts, it istransitioned into this state. Sl issues a process running FD, with the stopped state set.

* Failed: If aprocessfailsto provide a scheduled heartbeat, or is currently in the stopped state and ceases to
exigt, then it trangitionsinto this state. Sl issues a process running FD, with the failed state set.

« Complete: A processtrandtionsinto this sate when the processis unregistered. Sl issues a process
running FD with the compl ete state set.

Once aprocess is unregistered, a process running FD, with the complete state set, isissued. The processisthen

removed from the process container of SSI and istherefore no longer polled for its health; potentially reducing the
number of processes SSI must poll in order to determine its own hedlth. The state diagram is shown by Figure 6.

14

84K00570-130 Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
. ﬂ' .H..-: Bipimed |
i
z
_;.5"“' | —— :.. o
.-"" i - -""\-\.
; N . .
e ..-"'._.' ; ¥ -E .
OF = 4
Iy r Ill' .
| -,
| | Wi e %
s | Eagpius _l 3)
f | ,
| i E . !
N by =
I ¥ T L 1
| . :I I'. u.-.'_u--
HE . - T Wyrad Hawtak
._- -, Y fr—" -:.. i !.I..-.. .
Sl 1 - i r K
L ¥ | Lengmr
I| ll". i - B] II
. i J o]
1 £0 Y /
HE I
L 1 .n-i-;uul ' !
\ —— |
i ¥ -IH'- | _."
t /A
i g
! A e
; 1 P
- " -_F'-.F"

Figure 6 Process State Transition Diagram

A table driven polymorphic state machineis utilized to drive the states. This technique has been chosen for both
efficiency and completeness. The approach ensuresthat all possible state combinations are represented guaranteeing
that the system is able to properly handle any valid state change request aswell asall possible invalid change
requests. The state change classes are represented by Figure 7. In order to accomplish the global maintenance of
the process states, two new system event codes are utilized, these are 442 (SSl to Sl) and 443 (Sl to SSl).

15

84K00570-130

Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

RedManProcess

transzition: RedManProcessStateMachine

Changestate REDMANPROCSTATETYPE newState, REDMAMTRAMSTYPE transitionDirection, SCT *pSCT) REDMANMBOCOL

Haz a

RedManProcessStateMachine

statemMachine: Array (RedManProcessState)

ProcezsStateChange REDMANPROCSTATETYPE newstate, REDMANTRANSTYPE tranzitionDirection, SCT *pSCT) REDMANBOOL

Uzes

RedManProcessState

ProcessState(SCT *pSCTYL vidual REDMARNBOOL

RedManProcessStatelnvalid RedManProcessStateRedister

1.1.3.4 Subs

Figure 7 Process State Class Diagram

ystem Integrity Unique Algorithm Design

The process heartbeat algorithm within SSI is designed to work with both acyclic and cyclic heartbeats. Two modes
of heartbeat operation will be provided to accomplish the monitoring capability, i.e., a heartbeat mode and a PID
mode. Each process within SSI controls and monitorsits own heartbeat data and reporting. The algorithmis
presented in Figure 14.

1.1.3.5 Subs

ystem Integrity Development Tools

The tools outlined in the following table are used to implement Subsystem Integrity.

Tablell Subsystem Integrity Development Tools

Tool(s) Use

Misc. Text Editors Code development

ProDev UT and UIT

Visio Technical Diagrams (Class, Sequence, DFD, etc.)
Word Document preparation

16

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.3.6 Subsystem Integrity External Interfaces
The externa interfaces are provided in the sectionsthat follow.

1.1.3.7 Subsystem Integrity Data Dictionary
TBD

1.1.3.8 Subsystem Integrity Message Formats

Message Id: SCT_PROCESS ERROR
Message Type: Details
Message Severity: Error

Process % sin subsystem % sfailed. Reason Code: %d %s.

Insert 1: Process name

Insert 2: Subsystem name

Insert 3: User Defined Numeric reason code
Insert 4: User Defined Text reason

Help Text:
The process specified (insert 1) notified Subsystem Integrity of the Error specified (Insert 4).

1.1.3.9 Subsystem Integrity Display Formats
Subsystem Integrity has no displays.

1.1.3.10 Subsystem Integrity Input Formats
Subsystem Integrity accepts no external inputs.

1.1.3.11 Subsystem Integrity Recorded Data

All Subsystem to System Integrity data transfer isviaeither FDs or RM messages (SECs), and istherefore
automatically recorded. SSI records no other data.

1.1.3.12 Subsystem Integrity Local Storage Requirements and Formats
Subsystem Integrity requires hasno local tables or files.

1.1.3.13 Subsystem Integrity Printer Formats
Subsystem Integrity printsno data.

1.1.3.14 Subsystem Integrity Interprocess Communications (C-to-C Communications)

Shared memory is the primary vehicle for interprocess communications. Interfaces resident in non-Redundancy
Management programs write all datato shared memory in local (to the computer) areas of the SCT. Subsystem
Integrity executes periodically, at the SSR or DSR, and checks this data for changes. These changes are taken into
account in the generation of the HC FD, which isalso part of the SSR or DSR process. The C++ class definitions
and the compiler definethe format of this data.

Thereisno cross processor communication between parts of SSI.

1.1.3.15 Subsystem Integrity External Interface Calls (e.g., API Calling Formats)

17

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.3.15.1 API Layer Hierarchy

In an effort to provide the APIswhile minimizing the indirect dependencies a user of these APIs may encounter,
Redundancy Management (RedMan) has built several layersinto its API architecture. Figure 8 representsthese
layers asthe RTPS layer, the Apps layer and the RedMan layer, each of which are discussed in detail in the sections
that follow. In addition, it also displays the accessibility of these layers to those users, depicted in the diagram as
“Users”, of the Redundancy Management services..

REDMAN - Layer
Full Redundancy Management
Capabilities:
No User Capabilities - Not User Accessible
APPS - Layer
Minimal Dependencies (RM. etc))
Cpabilities:
Full R - Layer. Subsystem Initialization. SCT Write Capabilities Users
RTFS - Layer
Mo Dependencies
Capabilities:
Full 5CT Read. Heartbeats, Reqgistration. Error Reporting

Figure 8 API Layer

1.1.3.15.1.1 RTPS Layer

The RTPS Layer, or R-Layer, is the simplest (lowest) of the layers. It is designed to provide full SCT read support,
Process Heartbeats, Process Registration Services, and Process Error Reporting without linking in any additional
services other than that being provided by the API. Thereby minimizing any unforeseen link dependencies, thus
eliminating any circular link dependencies resulting from the use of the supplied API. In addition to minimizing the
link dependencies, this layer is designed to minimize the resource and runtime impact on the user of the API. All
communications necessary by Subsystem Integrity at this layer is accomplished through shared memory, utilizing
semaphores where appropriate to ensure data integrity.

1.1.3.15.1.2 Applications (APPS) Layer

The Application Layer is the next layer within the hierarchy. At this layer it begins to bring in dependencies beyond
the API, e.g., RM and its dependencies. This layer has been designed to provide authorized SCT writes, Subsystem
Initialization, as well as providing full RTPS Layer capabilities. As with the RTPS Layer, this layer is constructed
with minimal dependencies in mind.

1.1.3.15.1.3 Redundancy Management (RedMan) Layer

The RedMan Layer is the full implementation of Redundancy Management. This layer includes System Integrity,
Subsystem Integrity, Computer Integrity, etc. This layer is not accessible outside of RedMan. It provides no user
interfaces.

1.1.3.15.2 API Descriptions

Subsystem Integrity provides the following Application Programming Interfaces, each of which is presented in
detail in the subsections that follow.

18

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

* Process Registration

* Process Heartbests

* Process Error Reporting
e Subsystem Initialization

Descriptions of these APIsare available at:
http://www-cl cs/proj ect/syscontrol /redman/ClassList.html

1.1.3.15.3 Process Registration API

Through Subsystem Integrity, an API is provided allowing processes to be formally registered. Typically, processes
arenot directly registering themselves, that isa controlling process (ITS, CMP, HMP) formally registersthose
processes it has control over. All essential processes can only be registered through thisinterface. In order to
accomplish the global maintenance of the registration, two new system event codes will be utilized, these are 446
(SSl to SI) and 447 (Sl to SSI).

1.1.3.15.3.1 Process Registration Functional Description

Process registration is maintained globally in the SCT by registering the process with Subsystem Integrity locally,
then Subsystem Integrity notifies the Master SCT of the registration through System Integrity. System Integrity
notifies the Master SCT and it performs aregistration of the process. Onceregistered in the Master, it then
distributes the registered process notification out to all of the Client SCTs where they perform a similar registration,
thus finalizing the propagating of the registration out to all SCTs. The unregistration of the processis performed in
the same manner. The act of registering a process reserves a process object within the SCT corresponding to the
process being registered. If a process was previoudy registered then unregistered, and is being registered again,
then an attempt is made during the registration to provide the same SCT process object, thus preserving the process
name and process number relationship from one registration to another. However this relationship isnot guaranteed
since SSI has a predetermined number of processesit can have registerer at any given instance, if SSI needsto
register aprocessit will select an available processin the SCT for registration purposes; possibly aformerly
unregistered process thus making the associated process number unavail able until the processis unregistered... In
order to eliminate dependencies, this APl has been implemented at the RTPS Layer. Therefore, all communication
between the API and Subsystem Integrity is accomplished through shared memory. The notification between
Subsystem Integrity and the Master SCT aswell as the Master SCT and the Client SCTsis accomplished via System
Event Codes. The process name and the process running FD areissued by the Master SCT once the Master receives
the registration notification, thus eliminating any duplicate FDs from being generated. The process number under
which the process was registered is provided as aresult of the regigtration, aswell asthrough an additional interface
within the API. The sequence diagram in Figure 10 represents this description.

1.1.3.15.3.2 Process Registration Class Diagram

The implementation of the Process Registration requires several new classes be devel oped within this CSC. These
classesinclude the APl as well asnew classes at the RTPS layer allowing RedMan the ability to perform the process
registration without 1) having link dependencies, and 2) without exposing the underlying behavior required to
accomplish theregistration. The exigting, aswell as the new classes required, can be seen in the class diagram of
Figure9.

19

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

SCTRSubsystem SCTRProcess
1 i s

RedManRSubsystem Unregisters * RedManRProcess
Registers §

+
+Unregister[RedM anRProtessk): void

+RegisterHAMETYPE processHame, BREDMANBOOL isEssential): BedM anRProcess™

55IProcessHegister

Revison: A
July 8, 1998

+Registrationld{void): REDMANPROCESSHNUMT Y PE

Use
Fl

+Hegister[MAMETYPE processMName, REDMANBOOL isEssential): BREDMANPROCESSHUMTYPE IT3.HMP.CMP
+Hegistrationld{void): REDMANPROCESSHUMTYPE
HInregister{void): void

Uses

RedManRRegister 55IProcessHeartCyclic T4
P Use —
{or) Applications

F N

S5S5IProcessHeart Acyclic

Figure 9 Process Register Class Diagram

1.1.3.15.3.3 Process Registration Sequence Diagram

The sequence diagram for the registration operations can be found in the figure below.

20

84K00570-130 Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
1
Redgizter e Redizter —m
|
f———Process Mumber
Start —m —Check
—5EC 446 —f
F—pcdate —»
SEC 447 ————
Process Mame FD
with Registered State Set ’
Process Running FO —w
—Check
l—Check
Unregistet ————p— Inredister —p
|
rf————return controb——7F—
F—Terminate —pm
—Check
—SEC 446 —w
——pcdate —pm
SEC 447 —
Process Running FD
T with Complete State Set—# - PUEE—M
Registration .
Service SEIProcessRegister =3l Maszter SCT
A Process RedManRSubsystem =l Mini 1

Figure 10 Process Registration Sequence Diagram

1.1.3.15.4 Process Heartbeat API

Through Subsystem Integrity (SSI), an API is provided allowing processes to periodically or aperiodically inform
Subsystem Integrity that they are alive and processing. All RTPS process must report a heartbeat to SS. In
addition, all application processes must report aheartbeat to SSI. In an effort to minimize the impact on a process
using the heartbeat API, it isimplemented at the RTPS layer within the Redundancy Management API hierarchy
whereby all communicationsto SS| isaccomplished through shared memory.

1.1.3.154.1 Process Heartbeat Functional Description

There are two flavors of heartbeats provided by SSI. These are the Cyclic and the Acyclic heartbeats. At the
moment a process constructs either of the heartbeat types, the heartbeat object attemptsto register the process. One
of two actions can occur. First, if the registration object determines that the processis currently registered, then it
simply provides the process object to the heartbeat object and returns control. Second, if the registration object
determines that the processis not currently registered, then the process becomes registered however the registration
isan informa regigration, i.e., the process is considered non-essential. Therefore it isimperative that the
controlling process, that initially performed the formal registration, provide the registered process with the nameit
was registered under. If the process does not provide the heartbeat API with the name it was registered under, then a
type two-(2) registration occurs causing the process to become registered as an informal process. If thishappens,

21

——pdate —m

Cliert SCT

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

then the possibility exists that a process formally registered as an essential process has its heartbeats monitored as
though it were anon-essential process. All informal registrations produce non-essential processes, unless formally
registered as essential. Once the process has been registered, either formally or informally, then a process has been
reserved within the SCT corresponding to that process allowing communication between the heartbeat APl and SS.
Currently the number of possi ble processes represented in the SCT is 100, however this number is configurable. It
isimportant to note that the Process Running and Process Name FDs need to exist in the OLDB equivalent or
exceeding the number of processes supported by SSI for each subsystem within the TCID. Once the heartbeat API
has been constructed, the matter is simply to provide a heartbeat to SSI. Thisisdonein one of two ways, either
cyclically or acyclically.

* Cyclic Heartbeat: The cyclic heartbeat is provided by the process at the rate provided to the heartbeat object
during construction. To accomplish this, a Best() interface has been provided. Once the process provides
itsfirst Beat(), then thisisan indication to SSI to start watching the process for heartbeats. From this point,
SSI continually monitors the process until the heartbeat object is destroyed. From thefirst Besat(), until the
object isdestroyed, it istheresponsibility of the process to provide heartbeats to SSI at the specified rate.

It is okay to provide more than one heartbeat within the specified period, however if during the specified
period the process does not provide at least one heartbesat, then the processis considered to be unhealthy by
SSl.

* Acyclic Heartbeat: The acyclic heartbesat is constructed with a default period, provided by the process
utilizing the API. To accomplish the acyclic heartbest, a process has the ability to start the heartbeat
monitor using the default period provided in the constructor, or specify a period for that heartbeat. Once
the BeatStart() interfaceis utilized then SSI begins to monitor the process for a beat within the period
specified. During that beat period, the process hasthe ability to extend the beat for a particular period by
issuing a BeatExtend(). Oncereceived, it indicatesto SSl that it should recal cul ate the current heartbeat
rate for that cycle. The end of the beat cycleis completed by the process sending a BeatEnd()through the
API. Thisinforms SSI to discontinueits monitoring of heartbeats for this process until the next BeatStart()
occurs. Thisinterface provides the ability of truly event driven processes to provide a heartbeat to SSI only
when necessary, i.e., when they need to process an event. Aswith the cyclic heartbest, it is okay for the
process to compl ete its heartbeat cycle before the specified period, however if it should fail to complete the
cycle within the designated rate, then the processis considered to be unhealthy by SSl.

It isimportant to note that it is possible for an acyclic process to die following the issuance of a BeatEnd()indicating
to SSl to stop watching the heartbeats from aprocess. This could provide afalse indication to SSI that the processis
simply not processing any events. In an effort to eliminate this fal se indication, the acyclic process monitoring has
two modes of operation, 1) during a valid heartbeat cycle, SSI monitorsfor heartbeats 2) once the heartbest cycle
completes, SSI beginsto monitor the PID for its existence in the PID Table within the OS. The PID is extracted
from the OS and stored within the SCT once the heartbeat API is constructed by the process. An error messaeg is
produced if a process has not been formally registered at the time of the informal registration attempt. The sequence
diagrams in both Figure 12 and Figure 13 represent this description.

1.1.3.15.4.2 Process Heartbeat Class Diagram(s)

The implementation of the heartbeat classesis designed in order to take advantage of the API layer architecture
displayed in Figure 8. In order to adhereto the layer restriction while providing both the cyclic and the acyclic
interfaces, several new classes areintroduced. All of the classes aswell astheir interactions are shown in Figure 11.

22

Revison: A
July 8, 1998

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

Reqisters

RedManRProcess

F

.

RedManR5ubsystem

F

Uses

B eat|Information

RedManBRegister

F

Register|Process

551ProcessHeartCyclic

+Beat[void]): void
+ProceszMumber|void): REDMANPROCESSHNUMTYPE

Use

,j;_\ {or) Applications

551ProcessHeartAcyclic

-Beat(void]: void
+Beat5tart[PERIODTYPE penod): woid

+Beat5tart[void]): void
+BeatExtend[PERIODTYPE extension]): void

+BeatEnd[void]): void
+ProcessNumber[void): REDMAMPROCESSHUMTYPE

Figure 11 Process Hear theat Class Diagram

1.1.3.15.4.3 Process Heartbeat Sequence Diagram(s)
The sequence diagramsfor both the cyclic and the acyclic heartbeat operations can be found in the figures below.

23

84K00570-130

Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
Construct | Hegister Register . Reqgister . Data .
Return " iy iy iy
Beat Beat . Data |
Ld Ld
Beat Beat Dat
ea b atd b Data Health
ProcgssNumber . J¢ “Status
ProcdssMumber 4 4 b
Beat Beat Data
b b b Data e Health
Destructor | Unregister | Unregister | Unregister Data ¥ Status
RAeturn iy iy iy iy
Application RedManBReqgizter RedManBProcess RedManProcess
Process Shared 551
SSIProcessHeartCyclic RedM anR Subsystem M
emory
Figure 12 Cyclic Heartbeat Sequence Diagram
Construct | Hegister Register . Reqgister . Data .
Ld Ld Ld Ld Ld
Return
BeatStarit | BeatStart Data |
BeatEnd | BeatEnd N Data
i ProcgssNumber : : 4 Data 4 Health
ProcdssNumber " " Status >
BeatStart | BeatStart . Data
Ld Ld La
B eatE xtend .| BeatExtend . Data .
BeatEnd ’ BeatEnd § Data §
.~ — S > Data | Health
Destructor) Unregister , nreqister , nregister) D ata y ’ Status
Return v
Application RedManBReqgizter RedManBProcess RedManProcess
Process] Shared 55
S5S51ProceszsHeartAcyclic RedManRSubsystem are
Memory

Figure 13 Acyclic Heartbeat Sequence Diagram

24

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.3.15.4.4 Process Heartbeat Algorithm
Figure 14 represents the heartbesat verifications algorithm utilized by SSI when on its scheduled health check.

Process Health
Check

Decrement
Mo ™ bown Courter 4’@

Yes
Hearthest PID Set State
Moce o Presert Mo — Failed
Yes Wes
¥
PIC Heartheat Set State
@ND Presert Me Presert fesm Running
r
y Reszet Heartheat
BF Flag
F
Set State o Reset -
Stopped Do Counter
F
Finizh

Figure 14 SSI Heartbeat Algorithm

25

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.3.155 Process Error Reporting API

Through SSI, an APl isprovided allowing processes the ability to report runtime errorsto SSI. These errors are one
of the mechanismsthat SSI utilizes in determining the health status of a subsystem. An error has two attributes, 1)
the error type, and 2) the error severity. A description of each is presented bel ow.

e Error Type:

— Data Typically thistype of error indicates that a process has encountered an error with its data, i.e., a
data e ement does not contain an expected value.

— Execution: Typically thistype of error indicates that a process has encountered an error initslogic.
The software may have encountered a section of source code that it was not expecting to enter during
normal operations.

— Interface: Typically thistype of error indicates that a process has encountered an error with adata
element passed through itsinterface. It may be that the datais corrupted or empty (null pointer/value)
causing some type of default processing to occur.

o Error Severity:

— Information: Typically thislevel of error indicates that a process has encountered aminor eror; it (the
process encountering the error) is able to recover completely from the error and continue unaffected;
the error condition simply needs to be logged.

— Warning: Typically thislevel of error indicatesthat a process has encountered an error and recovery is
attempted by the process encountering the error, if necessary or possible. This may indicate that the
normal operations of the process, from the point at which the error was reported may be at risk;
possibly affecting the overall operability of the process.

— FError: Typically thislevel of error indicates that a process has encountered a severe error inits
processing and it (the process encountering the error) will attempt to recover if possible. Thiserror
may as well indicate that system operahility is at risk.

— Fatd: Typically thislevel of error indicates that a process has encountered a severe error inits
processing and it (the process encountering the error) is unable to recover. Processing from the point
wherethe error is encountered may be futile. This error indicates that overall system operability is at
risk. Once an error of thisnature is encountered and the process is essentid, SSI decrementsiits health
counter and Sl trangitions the affected subsystem to a communicating state. The affected process
remainsin thefailed sate until it is either unregistered or cleared by SS.

1.1.3.15.5.1 Process Error Reporting Functional Description

The process error reporting isimplemented at the lowest API layer to eiminatelink dependencies. Therefore al
communi cations necessary to report the error to SSI occur through shared memory. Once a process constructs an
instance of the error reporting API, the new error object locates thelocal subsystem (SSI) thus creating a direct
communication path between the error object and SSI through shared memory. When the process is encountered
with an error and sends a Report() message to the error object, the message isddlivered directly to SSI through the
API. Based upon which network the subsystem is located on, either the DCN or the RTCN, the reported error
messages will be flushed by SSI to System Messages at a DSR or SSR respectively. The sequence diagram in
Figure 16 represents this description.

1.1.3.15.5.2 Process Error Reporting Class Diagram(s)

The implementation of the process error reporting API requires modifications to the current error reporting classin
order to accommodate the RedMan API layer architecture represented by Figure 8. The new class is depicted bel ow
as Figure 15.

26

84K00570-130

Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
FedManREubsyetem
55 IProses=E mor
Repotizhar emorText, ERRORTYFE erorEncountered, ERRORSEWER ITY emorlewel, char emorbats): woid
Figure 15 Process Error Class Diagram
1.1.3.155.3 Process Error Reporting Sequence Diagram(s)
The process error sequence diagram is shown below.
Constructor
. return . Heslth
Feport Feport Data
Feport Feport Data
Repart Feport Data
Diata Health
Report | ProcessError
Feport Feport Data Feport | ProcessError
Report | ProcessError
Repor Report Data
Destructar
Data Health
return Report ProcessError
Feport ProcessError
Application RedanRSubsystem RedManzubsystem RedbanErrar
process
==IProcessErrar SEl =ystem
Meszage

Figure 16 Process Error Sequence Diagram

1.1.3.15.6 Subsystem Initialization API

The SSISubsystem provides an interface for Ops/CM to notify Sl that the box has completed the transitionsto
Loaded and Go. (Other tranditions are determined by data availableto SI). Thor 3.0 does not affect thisinterface.

1.1.3.15.6.1 Specification:

class SSI Subsystem

27

84K00570-130 Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
{

public:

SSI Subsystem();

void Loaded();

void Go();

void NoGo();

void ~SSISubsystem ();

}

1.1.3.15.6.2 SSISubsystem

This constructor creates the shared memory connection so that the OPS/CM process can communicate this
information with the SI SSR process. This constructor must be invoked after Sl has been [oaded.

SSI Subsystem();

Arguments: N/A
Return Value N/A

1.1.3.15.6.3 Loaded

Thisinterface isto be invoked when OPS CM has successfully loaded the subsystem. Invocation resultsin the
Loaded SEC being generated and sent to Sl.

void Loaded();

Arguments: N/A
Return Value N/A

1.1.3.15.6.4 Go

Thisinterface isto be invoked when OPS CM has successfully started all System Software. Invocation
resultsin the Go SEC being generated and sent to Sl.

void Go();

Arguments: N/A
Return Value N/A

1.1.3.15.6.5 NoGo

Thisinterface isto be invoked when OPS CM succeeds in loading Subsystem Integrity but fails loading other
system software. Invocation resultsin the No Go SEC being generated and sent to Sl.

void NoGo();

Arguments: N/A
Return Value N/A

1.1.3.16 Subsystem Integrity Table Formats
Subsystem Integrity uses no tables.

114 Computer Integrity

28

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Computer Integrity’s role is to gather performance data and determine whether a platform is healthy. Although
multiple subsystems may be present on a single platform (CCP/DDP), only one copy of Computer Integrity will
execute on that platform.

SCTRComputer

+SerialNumber()

PN

SSISCTComputer

-mAvgPercentCPUUsed
-mAvgPercentMemoryAy
-mAvgPercentDiskUsed
-mNumberDiskAccesses
-mNumberDiskErrors

Figure 17. Computer Integrity Classes

Computer Integrity is composed of the following class:

SSISCTComputer: This class gathers the performance data from the OS and determines whether the platform is
healthy. The private data attributes of the SSISCTComputer Class among others are inputs to a method that
determines Computer health.

1141 Computer Integrity Detailed Data Flow

Computer Integrity gathers performance data from the operating system (OS) at 10 second intervals, publishes the
gathered data as SECs and FDs (see Requirements), and determines if the platform is healthy.

Computer Integrity also monitors Unix kernel errors through the syslogd message services (see Table 1.1.1.1). For
Thor, if an error is received from the OS kernel with a priority of LOG_CRIT or below]dtferm will be marked
as unhealthy. Obtaining error messages about the Unix kernel through syslogd is not entirely satisfactory for a
number of reasons:
* Locating a reason for the error would involve scanning the message text for keywords - No standard
format - Highly OS specific
* Itis undocumented what specific platform conditions would differentiate LOG_EMERG vs.
LOG_ALERT vs. LOG_CRIT

Unfortunately, syslogd seems to be the only semi-portable method for obtaining information about hardware errors
from the OS. Other solutions are currently being sought.

29

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
SUBSYSTEM
INTEGRITY Generated
FDs
Healthy? Yes/No
COMPUTER
INTEGRITY
\ Generated
SECs
Perf Dat
ormance bata rsp Health Data -
@0.1Hz
Sydog Errors
| OS Layer
CPU MEMORY DISK OTHER
Hardware Layer
Figure 18. Computer Integrity Data How
Tablelll. SYSLOG Message Priority Types
Message Priority Type Description Unhealthy if
recvd?
LOG_EMERG A panic condition. Thisisnormally broadcast to all users. Yes
LOG_ALERT A condition that should be corrected immediately, such asa Yes
corrupted system database
LOG CRIT Critical conditions, e.g., hard device errors Yes
LOG_ERR Errors No/Maybe
LOG_WARNING Warning messages No/Maybe
LOG_NOTICE Conditionsthat are not error conditions, but should possibly No/Maybe
be handled specially.
LOG_INFO Informational messages No
LOG_DEBUG Messages that contain information normally of use only No
when debugging a program
1.1.4.2 Computer Integrity Context Diagram
TBD
1143 Computer Integrity State Definition and State Transition Diagram
TBD

30

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1144 Computer Integrity Unique Algorithm Design
TBD

1.1.45 Computer Integrity Development Tools
TBD

1.1.4.6 Computer Integrity External Interfaces
TBD

1.1.4.7 Computer Integrity Data Dictionary
TBD

1.148 Computer Integrity Message Formats
TBD

1.1.4.9 Computer Integrity Display Formats
Computer Integrity owns no displays

1.1.4.10 Computer Integrity Input Formats
Computer Integrity does not have alanguage-like interface

1.1.4.11 Computer Integrity Recorded Data
TBD

1.1.4.12 Computer Integrity Local Storage Requirements and Formats
TBD

1.1.4.13 Computer Integrity Printer Formats
Computer Integrity printsno data

1.1.4.14 Computer Integrity Interprocess Communications (C-to-C Communications)

Computer Integrity hardware performance data and configuration data (serial number) are stored in the local copy
of the SCT . Computer Integrity also generates FD and SEC packets of performance data as shown in Table IV
and TableV.

TablelV. FDs Generated by Computer Integrity

FD NAME DESCRIPTION STYP LEN

31

84K00570-130 Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
FD NAME DESCRIPTION STYP LEN

SnnnnnDISKU | CCWS001 DISK USE COUNTER DEC 16

SnnnnDISKE | CCWS001 DISK ERROR COUNTER DEC 16

TableV. SECs Generated by Computer Integrity

SEC Number Name Sour ce Destination

408 CPU Utilization Cl S| (Master SCT)

409 Available Memory Cl Sl (Master SCT)

410 Disk Utilization Cl S| (Master SCT)

411 Disk Accesses (DISK Cl Sl (Master SCT)
USE COUNTER)

412 Disk Errors (DISK Cl Sl (Master SCT)
ERROR COUNTER)

1.1.4.15 Computer Integrity External Interface Calls (e.g., API Calling Formats)
Computer Integrity provides no API calls

1.1.4.16 Computer Integrity Table Formats
Computer Integrity uses no tables.

115 System Configuration Table

After system initialization, the master copy of the System Configuration Table resides on the Master CCP.

Synchronized copies are maintained on al other computersvia System Event Codes (SECs). Each SEC contains an

8-byte code which encapsulates such information as the sender’s logical address, the sequence number, and the
event code.

On each computer, the SCT is initially built from pre-stored,files updated based on the changes that have been

recorded at the Master CCP. The SCT is maintained in shared memory, and an API is provided to allow the SCT

users to get access to the information. The system configuration can be viewed as a tree — the Set contains Test Sets,
each Test Set is a group of Subsystems, each Subsystem is a collection of processes. The structure of the SCT, and
the design of the API reflect this organization. Iterators are provided to allow looping through the sets to extract
information, shortcut “My” objects are also defined at each level to allow quick access to local configuration data.

Initial creation of the SCT is through Microsoft Access tables. These tdldesmuch of the configuration to be
defined prior to the start of the test, then updates as the system is configured.

32

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1151 System Configuration Table Detailed Data Flow

ubsystem
Integrity

ubsystem
Integrity
Health and Status FDs

System Event Codes

Health and Status FDs

System Event Codes

Update SCT

System Event Codes

SCT
(Master)

Update SCT

Master CCP
Write Read Other Computer

Applications

Figure 19. System Configuration Table Data Flow

When an application at a computer requests amodification to the SCT through the provided AP, the update request
is sent to the master copy of the SCT located on the Master CCP. There, the update is made as appropriate, and the
other SCTs are updated through System Event Codes. The updated datais then available to the application through
the Read APIs. Subsystem Integrity updates are handled in much the same way. Subsystem Integrity reports health
and Status through both System Event Codes and Health and Status FDs. Based on thisinput, System Integrity
evaluates the hed th of the subsystem and updates the master copy of the SCT. These updates are relayed to all
copies of the SCT through System Event Codes.

1.15.2 System Configuration Table Context Diagram
TBD

1153 System Configuration Table State Definition and State Transition Diagram
TBD

1154 System Configuration Table Unique Algorithm Design
TBD

1155 System Configuration Table Development Tools
TBD

33

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.5.6 System Configuration Table External Interfaces

Since the SCT is brought up early within a Subsystem initialization routine, System Messaging will not be available
until alater time frame within theinitialization sequence and any error reporting accomplished by the SCT will beto
alocal temporary data store provided by the SCT. However, once the necessary mechanismsarein place allowing
the SCT to utilize System Messaging, the following System Messages may be generated by this CSC.

M essage Number =SCT_ILLEGAL_TRANSITION
Message Type = Details
Severity = Error

Illegal state trangtion occurred: Subsystem %s from %s to %bs.

Insert #1= Character String (subsystem name)
Insert #2 = Character String (old state)
Insert #3 = Character String (new state)

Help Text:

This message indicates that a state transition occurred in the named subsystem that was not expected based on the
design. Possible causesinclude: Incorrect System Integrity Design, Unforeseen initialization sequences, data
corruption.

Thisevent will also cause the SCT to be logged to the SDC.

M essage Number =SCT_SUBSYSTEM_STATE_CHANGE
Message Group = Details
Severity = Informational

Subsystem %s state changed from %s to %s.

Insert #1= Character String (subsystem name)
Insert #2 = Character String (old state)
Insert #3 = Character String (new state)

Help Text:
The named subsystem changed state. This message indicates the state change occurred as a planned transition under
normal operations.

M essage Number =SCT_UNEXPECTED_SUBSYSTEM_STATE_CHANGE
Message Group = Summary
Severity = Error

Subsystem %s Unexpectedly changed state from %sto %s

Insert #1= Character String (subsystem name)

Insert #2 = Character String (old state)

Insert #3 = Character String (new state)

Help Text:

This message indicates that afailure occurred in the named subsystem. That subsystem changed state. System
Integrity may be taking recovery actions.

Additional Messagesare TBD in the Detailed Design to indicate initialization errors during loading of SCT.

34

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1157 System Configuration Table Data Dictionary
TBD

1.1.5.8 System Configuration Table Message Formats
TBD

1.1.5.9 System Configuration Table Display Formats
This CSC does not provide Table Display Formats.

1.1.5.10 System Configuration Table Input Formats
Input formats for the Subsystem Integrity CSC are defined by the SEC Formats and the API.

11511 System Configuration Table Recorded Data

The SCT will attempt to utilize RM for most of its messaging needs since the recording mechanism for the SDCis
inherent within Reliable Messaging (RM). However, since the SCT is needed by RM and the SCT isearly within
the Subsystem initiaization routine, it must utilize services lower within the Message Stack (see Notes) such as
Application Messaging (AM) until which time RM is made available (post SCT build) to the SCT. The SCT will
employ and restrict itself to the various packet types provided within the Thor RTPS Packet Payload ICD

84K 00351-001 for recordability.

1.15.12 System Configuration Table Local Storage Requirements and Formats
TBD

1.15.13 System Configuration Table Printer Formats
This CSC does not print anything, therefore does not provide Printer Formats.

1.1.5.14 System Configuration Table Interprocess Communications (C-to-C Communications)

Because the SCT resides on all computers, and must be kept current on all computers, there are a number of internal
operations involved in synchronizing and re-synchronizing the SCTs. These operations are described bel ow.

115141 System Configurtation Table Initialization

Typically, the Master CCP will be the first machine powered on, and will, as aresult, aso own the Master SCT,
built from thefiles onitslocal disk. However, there are cases where the configuration needs to be changed prior to
powering on the Master CCP. This can be accomplished by allowing the Master SCT to reside in places other than
the Master CCP, then transferring ownership to the Master CCP when it isup and running. The following protocol
isused to ensure that exactly one Master exists prior to creation of the Master CCP (See the state transition diagram
bel ow):

1) Inthelnitiaization State, the SCT process issues a broadcast Request SCT for the current SCT using
Application Messaging (AM). Reiable Messaging requiresthe SCT for its own initialization, and therefore
cannot be used to load theinitial SCT. One of three thingswill occur: The request will timeout, one or more
Master Acknowledgments may be received, or a Master SCT response may be received.

35

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

2)

3)

4)

5)

6)

8)

If the Master SCT response isreceived, the process |oads the SCT from the message, and at compl etion of the
loading isthein the SCT Loaded State. Thiswill be thetypical path for computers other than the Master CCP
when the Master CCP is brought up first.

If one or more Master Acknowledgments are received, the ownership of SCT Magter is ill being decided, but
this computer is not an immediate candidate. It sitsin the Waiting state while ownership isdecided. Once
decided, the owner will send the Master SCT Response, at which point the process loads the SCT from the
response and continuesto SCT Loaded state. There are some conditions under which the eventual master will
not be aware that the process is waiting, so after a specified time-out, the Waiting process returnsto the
Initialization State where it repeats is broadcast Request SCT. Typically, the master will respond with the
SCT, but occasionally, it will return to the wait state, and in even rarer cases (all competing masters have failed
prior to any of them becoming master), it will compete to become the master. This state will be most
frequently used when power isapplied to all computers S multaneoudly.

If the Request SCT times out, the process enters the competition for ownership of the Master SCT. It then
announces to the world its host name and its goal to become Master SCT viaan Assert Master Broadcast. It
repeats this announcement 3 times, waiting Init SCT Timeout between each announcement. Very few
computers will reach this state. At least two annunciations are required. The second computer to reach the
competing state will have missed the first assert. The first computer then needs to Assert a second time to
notify the second computer of itsrank. Thethird assert is only necessary if one of the messages is dropped.
The first computer powered on will reach the Compete state; typically thiswill be either the Set Master CCWS
or the Master CCP. If al computers are powered on simultaneously, one or two should reach this state, the rest
should reach the Waiting state. Thelength of the timeout has some bearing on how many reach this sate. The
longer the timeout, the greater the number of competitors.

Whilein the Competing for Master state, the process may receive an Assert Master Broadcast from another
computer. If it does, it usesranks hostname against the hostname of its competitor. Earlier in aphabetical
order is defined to be higher in rank. If it is of higher rank than the received broadcast, it ignores the broadcast.
If of lower rank, it returnsto the Init state and issues a new Request SCT. The higher ranking competing
master will then respond with a Master Acknowledgment.

If no higher ranking computer Asserts during this period, this computer becomes the Master and compl etes
loading the SCT from files. In addition, once entering the competition, it responds to any Request SCT
broadcast with a Master Acknowledgment. Thislimitsthe competition to those computers that came up within
the timeout window of the first Request SCT. Note that if two or more computers timed out on the Request
SCT, future requesters may receive a Master Acknowledgment from more than one computer. A missed
Request SCT may result in another computer trying to assert after this computer has reached the Loading From
File state. At that point, the process responds with an Assert Master of that outranks all contenders.

After reaching the Master Loaded state, it respondsto each earlier Request SCT (which it earlier responded to
with a Master Acknowledgment) with a Master SCT Response. Future Reguest SCTsreceive the Magter SCT
response that contains the current SCT.

Note that no computer can reach the SCT |oaded state until the competition for master has been successfully
completed. Because thisistrue, no state change SECs have been sent. All computers powered on during the
competition have SCTsthat reflect the state of the files on the computer that became master.

36

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Time Out=1, 2 Master Ack()
Loading SCT N/
Waiting
Master SCT Request SCT
Load from Files

Load Complete

/—) Master
SCT

Request SCT
Other
Initialization Competing
SCTs

Request SCT Timeout

Assert Master(Rank)

igher Renking Assert Master

Compete for
Ownership

Master SCT

Other
itializing
T

I Wait Time Out

Master Acknowledgment

Master SCT()
Master Load Complete

Master Loaded

Request SCT

SCT Loaded

Master SCT()

Figure 20. SCT Initialization State Transitions

1.1.5.14.2 System Configuration Table Transfer of Ownership

When the Master CCP comes up, it needs to assume ownership of the Master SCT. However, in order to alow for
the Master CCP to be assigned, it cannot assume ownership based purdy on file content. Assuming the Master CCP
does not own the Master SCT when it completesits SCT initialization, it then initiates a process to claim ownership
(See the state transition diagram bel ow):

1)

2)

3)

Prior to the Master CCP coming up, the Master SCT will be residing & sewhere within the Test Set (See SCT
Initialization). Once the Master CCP loadsits SCT per the SCT Initialization state machine, its SCT will bein
an SCT Loaded state. From the SCT Loaded state, one of two things will occur, firgt if the SCT has any
updatesto process following theinitial table load from the Acting Master SCT, it will process these updates,
second the SCT will make its CCP Master host determination causing a transition from the SCT Loaded state to
the Acquire Master state.

Immediately following the transition of the Master CCP SCT to the Acquire Master state, it will 1) begin
storing al of the SCT update requests for historical reference, 2) send out a Request Master Relinquish message
using Application Messaging (AM) to the Master SCT for it to begin the transfer process thereby causing the
Master SCT to switch to its Relinquish Master state, and 3) begin assuming some of the responsibilities of the
Master SCT by sending out Master Acks for any SCT request and storing them for later transmission.

However, if atimeout occurs whilein the Acquire Master state, the Master CCP SCT will Smply re-issue the
Request Master Relinquish message to the Master SCT.

While the Master SCT is dill in the Master Loaded state, it accomplishes a couple tasks. First it processes any
SCT update requests it receives from the System Integrity Stub as well as processing any SCT requests from
other Initializing SCTs, second the Master SCT processes the Request Master Relinquish message from the
Master CCP SCT by immediately storing the SCT updates, without processing, and transitioning into its
Rdinquish Master state.

37

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

4)

5)

6)

8)

Revison: A
July 8, 1998

Oncethe Master SCT isin the Relinquish Master state, it will continueto store any and all SCT update requests
for historical purposes to be utilized by the CCP Master SCT during the transition process. The Master SCT
will send a Master Ack for all SCT requests by other Initidizing SCTs, and it will send out a Relinquish
Response message with the stored SCT updates, including their sequence numbers, back to the Master CCP
SCT as a confirmation of beginning the SCT transfer process. Whilein thisstate, if the Master SCT does not
receive the Relinquish Accept message after sending out the Relinquish Response message using AM (up to 3
times), the Master SCT will timeout and change back to the Master Loaded state and process all outstanding
SCT updates and requests.

It isimportant to note that at thistime, when the Master CCP SCT isin the Acquire Master state and the Master
SCT isin the Relinquish Magter state, the Master CCP SCT will synchronize itself with the Master SCT by
verifying that it has received and processed all of the SCT updates by comparing itslast SCT update sequence
number with that of the first one received within the Relinquish Response message from the Master SCT. If
any of the SCT updates were not received by the Master CCP SCT, it will request them from the Master SCT
and process, re-requesting if necessary. Thereby synchronizing the Master CCP SCT with the Master SCT.
Following the receipt of the Relinquish Response message from the Master SCT, the Master CCP will
synchronizeits collection of SCT update requests with those packaged in the Relinquish Response message
from the Master SCT, to determine stale updates and any overlapping updates between the two collections.
Once synchronized, it will send out a Relinquish Accept message using AM to the Master SCT and transition to
the Master Loaded state.

While the Master SCT isin the Relinquish Master state and receives the Relinquish Accept message from the
Master CCP SCT, it will flush its collection of SCT updates, requests, and discontinue sending out the Master
Acksto the other Initializing SCTs. The Master SCT will then transition to the SCT Loaded state, completing
the transfer of the Master SCT to the Master CCP SCT.

Once the Master CCP SCT has tranditioned into the Master Loaded state, it will process al of the SCT updates
and requestsit has stored, new update requests, and new SCT requests, thus completing the SCT Magter
transfer.

-_— i
Actag Masior 3CT ———— P Computarjelf
——=" TR pm—— I o 1Y Y)
BOTUpdsts MestWiSCT ol L S wiel
. gy | Fabgeast SCT i
: Faquig - S [tk
/ = InifLoaded
i qu.eswm . | I'Ir:l-:f eh h .E:|:..;m|. _] SiTe
T ’ .q ST Londed 1—— e
||'.'IH':-|I:IrLlJﬂ.I?DU l 1-,,,,,,._,. - ‘ElFI_ Usndat | , R
r quest | | - T
B I"II|1r.||lr|!| ﬁﬁ_ [a— / | - -
J —————— Injgrity ! ! - /)
. ST Lipdnin Bk / Foataguish ’ i
II Mnguesl’ Faquas S doapl “ﬂ"a_!l)lﬁi’.'\. 'I
Mastiee) / L~ 7
I. Anlinguish Flabnoish " I " binuta SCT
) Fasponse, T
- 1LE e
0.zx I_-' ~ " PAyguest SCT
¥ BCT Loaded |— . Iy i ' -
1] 'x T'“ i |' 4 bnstur Londed | e
b miul S Byguesl BCT L. A SLT Updats
Ll 3 | T“ JF At *
Pt T T ST f | I T 1T
¢ Acquine Masier [-
— o
o BOT U abe
ST Ligdnin, Feque
Higaesl . [
Siyrufeam
—— Inlngisy
[51)
Magher COF BET

Figure 21. SCT Transfer of Owner ship State Transitions

38

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.5.14.3 System Configuration Table Synchronization

All updatesto the SCT areinitiated by System Integrity at the Master CCP. The Master SCT, which resides on the
Master CCP, then issues a SEC to all other copies of the SCT. This SEC contains the requested update, and a
sequence number that specifies the current version of SCT. The Master SCT a so publishes this version number asa
System Status FD. When the SEC isreceived by aremote SCT, the version number is checked against the current
version number to ensure no updates have been missed (SSI also verifies the current SCT version matches the FD as
part of its SSR/DSR health check. See the Subsystem Integrity section, 1.3.3, of this document for details of the
periodic check.). If the SEC sequence number is correct, the update is applied to the SCT. If not, the SCT requests
all updates sinceitslatest version directly from the Master SCT through a C-to-C. These updates are then applied as
received.

Relevant System Event Codes:

256 Subsystem Loaded

257: Subsystem Communicating
258: Subsystem Go

259: Subsystem No Go

260: Subsystem Not Communicating
261 Subsystem Not Loaded

264: New Active

393 Subsystem isrunning ORT
394: Subsystem is not running ORT
401: Subsystem Loaded

402: Subsystem Communicating
403: Subsystem Go

404: Subsystem No Go

405: Subsystem Not Communicating
406: Subsystem Not Loaded

413: Initial HC Recelved

500: SCT Relinquish Request

501: SCT Relinquish Response

502: SCT Reinquish Accept

SECsfrom Master SCT to Slave SCTsfor changeregquests are TBD in the Detailed Design.

1.1.5.14.4 System Configuration Table Shared Memory

An SCT will reside on each platform (HCI, CCP, DDP, Gateway) with all updates being received by the Master
SCT. Theindividual SCTsresiding on a Resource, including the Master SCT, will be referenced through its
external interface provided by this CSC. Each SCT will create an area of shared memory where it will storethe
necessary objects comprising the SCT. The first object stored within this address space will be the Set object as
depicted below.

\l/SEt Object

TI])GI]I]I]I]I]I]I] I]x3l]l]f=123f/]\

1M

Figure 22. SCT Shared Memory

39

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

The SCT shared memory segment will be approximately 1 Megabytein sze. Thefina sze of the memory space for
Thor will be based upon the number of elements within the SCT initialization files, the current size ismore than
adequate for the SDE-1 data set, additional data setswill be made available for futuretesting. Each SCT APl object
constructed will attach itself to the appropriate region of shared memory and establish the necessary linksinto those
objects containing the relevant information for the object constructed, i.e., if an SCTRSet, or SCTRTestSet object is
constructed, links to its name, relevant “My” information, and appropriate containers are established.

1.1.5.15 System Configuration Table External Interface Calls (e.g., API Calling Formats)

This CSC provides an interface for reading data form the SCT as well as writing information into the SCT. The
interface is comprised of multiple objects. As shown in Figure 23, the SCT is a tree of containers that reflects the
logical configuration of the system. The Set is a collection of Test Sets, Each Test Set contains a number of
Subsystems, Resources, Gateways and Groups. Resources are attached to external systems, and Subsystems are
composed of Processes.

SCTRSet

i

SCTRContainerTestSdt

i

SCTRTestSet
CTRContainerSubsystem ECTRContainerResource ECTRContainerGateway SCTRContainerGroup
SCTRSubsystem SCTRResource SCTRGateway SCTRGroup
SCTRContainerProcess $CTRContainerAttachedTo
SCTRProcess SCTRAttachedTo

Figure 23. SCT API Hierarchy

The collections are all derived from the SCTOrdered class (Figure 24). While there is no inherent ordering of the
various items, the use of the Ordered class allows searching for objects and stepping through each of the Objects.
Only those methods that manipulate the existing members of the set are provided through the SCT Ordered class.
This prohibits deletion of SCT elements through the API. No unique methods are provided in the SCT Ordered
subclasses, but the methods are redefined to allow only homogeneous sets.

Figure 25 specifies the methods of each of the classes. In order to be collected, each is derived from the
SCTCollectable class. All values in the classes are available as methods that return the values. The GetContainer

40

84K00570-130

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

Revison: A
July 8, 1998

methods in each class allow retrieval of the containers as shown in Figure 23. A compete SCT APl users guide can
be found on the clcsmail server at the URL:

http://mww-clcs/project/syscontrol /redman/ ClassList.html

SCTOrdered

+First
+Last
+Find

#CTRContainerResourr{e

%CTRContainerSu bsyster]p

#CTRContain erGatewaJ/

#CTRContain erGatewaJ/

FCTRContain erTestSe‘

FCTRContainerGrouI) %CTRContainerAttach edTl)

FCTContainerProcesl;

Figure 24. SCT Container Structure

SCTCollectable

A

SCTRTestSet SCTRProcess SCTRResource SCTRSubsystem SCTRGroup
+MySubsystem() +Name() —1 +ResidingOn() +Classification() +GetContainer()
+MyResource() +Criticality() +Executing() +CurrentState() +Name()
+MyGroup() +CurrentState() +RTCNPrimarylPAddress() +ExecutingOn()
+Name() +RTCNBackuplPAddress() +Role()
+GetContainer() +DCNPrimarylPAddress() +SwitchoverEnabled()

i +DCNBackuplPAddress() +GetContainer()
+GetContainerAllocated() +ReferenceDesignator() +Name()
+ i + i
+GetContainerinUse() +Sﬁ;§%§ﬁg};ﬂ0 LoqmaIIDI()
N\
SCTRGateway SCTWSubsystem
SCTRComputer

+SerialNumber()

+ChangeClassification()
+ChangeCurrentState()
+ChangeName()
+ChangeRole()

+ChangeExecutingOn()

+ChangeSwitchoverEnabled(

PN

SCTWGateway

41

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Figure 25. SCT Object Inheritance

1.1.5.16 System Configuration Table Table Formats

The SCT isbuilt from 12 files. Each file iscomma delimited and provides information that defines the part of the
system configuration. The format of each of these filesis described bel ow.

1.1.5.16.1 Set File

Thisfile specifies the name of the Set. Thisis tatic, but will vary from facility to facility. Thereisonly one record
inthisfile.
Name: sets.txt

For mat: Comma ddlimited

TableVI. Set File Format

Field Type Contents

Set Name String Thiswill be the Set Name.
Example:
IDE

1.1.5.16.2 Test Set File
Thisfile specifies the Test Setsthat can exist inthe Set. Thisis expected to be used primarily by Set Integrity.

Name: testset.txt
Format: Comma ddlimited,
TableVIIl. Test Set File Format

Field Type Contents
Test Set Name | String A unique name for atest set. There are no constraints on the
contents of the giring.

Example:
IDEA

IDEB

1.1.5.16.3 Group File

Thisfile specifies the Groups of Resources that must be allocated to asingle test set. Thisinfomation is used
primarily by Set Integrity to ensure that no group is split across test sets.
Name: groups.txt

Format: Comma delimited
TableVIII. Group File Format
| Field | Type | Contents

42

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

Group Name String The Name of the group. Thisname isunique

Group Type Integer 0 = Null Group

1 = Control Group

2 = Front End Zone Group
3 = Untitled Group

Example:
SME Gateways,2

VAB Gateways,1

1.1.5.16.4 Resource File

Thisfile specifies the parameters for the individual resourcesin the Set.
Name: resource.txt

For mat: Comma ddlimited

Table | X. Resour ce File For mat

Field Type Contents

Host Name String The commonly used name for the Resource. Thisnameis unique.

Physical ID Int16 Number that uniguely identifies the resource within the set.

Reference String Thisfield specify the physical location of the resource

Designator

Primary RTCN | String Defines the IP Address to be used by the Resource when

IP Address communicating on the Primary RTCN. Thisfield may be null (for
CCWSs)

Backup RTCN String Defines the IP Address to be used by the Resource when

IP Address communicating on the Backup RTCN. Thisfield may be null (for
CCWSs and dl processors prior to installation of the backup
RTCN).

Primary DCN IP | String Defines the IP Address to be used by the Resource when

Address communicating on the Primary DCN. Thisfield may be null (for
gateways)

Backup DCN IP | String Defines the IP Address to be used by the Resource when

Address communicating on the backup DCN. Thisfield may be null (for
gateways and all processors prior to theinstallation of the backup
DCN)

Example:

IDE_CCPO01,1,1A365,123.123.255.255,123.123.255.255,123.123.255.255,123.123.255.555
IDE_CCP02,2,1A366,233.233.233.233,233.233.233.233,233.233.233.233,233.223.223.223
IDE_DDPO01,3,1A399,433.433.433.433,555.555.555.555,444.444.444.444,333.333.333.333
IDE_DDP02,4,1A400,433.433.433.433,111.111.111.111,222.222.222.222,333.333.333.333
IDE_GSEO01,5,2A120,433.433.433.433,322.222.222.222,334.343.434.343,212.341.234.123
IDE_GSEO02,6,2A250,344.344.344.344,333.333.333.333,123.412.341.234,234.123.412.341

1.1.5.16.5 Subsystem File

Thisfile specifies the definition of the Subsystem
Name: subsys.txt

For mat: Comma ddlimited

43

Revison: A
July 8, 1998

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

Table X. Subsystem File Format

Field Type Contents
Subsystem String The name of the subsystem being defined. Because thisfileis used
Name by Set Integrity, agiven subsystem name may appear more than
once. The combination of Test Set/Subsystem Nameis unique
within thefile.
Logical ID Int16 Unique identifier for the subsystem. Used asthe CPU ID in the
network message header.
Switchover Integer When 0, Switchover isdisabled. When 1itisenabled. No other
Enabled valueisvalid.
Role Integer 0 =No Assigned Role
1=Active
2 = Standby
3 = Hot Spare
Classification Integer The Type of Subsystem
0 = No Assigned Classification
1=CCP
2 =Mager CCP
3=DDP
4=CCWS
5 =Mager CCWS
6= OpsCM
7 = Gateway
Example:
CCP1S,2,0,2,2
GSE1A,31,1,7

1.1.5.16.6 Subsystem to Test Set Map File

Thisfile specifies the Test Set to which each Subsystem is all ocated
Name: ss2ts.txt

Format: Comma delimited
Table XI. Subsystem to Test Set M ap File Format

Field Type Contents
Test Set String Test Set Name. Thiswill match aname provided in thetest st file
Subsystem String Subsystem Name. Thiswill match a name provided in the
subsystem file.
Subsystem Integer The Type of Subsystem. Thisis consistent with the definition in the
Classification Subsystem File.
0 = No Assigned Classification
1=CCP
2 =Mager CCP
3=DDP
4=CCWS
5 =Mager CCWS
6 = Ops/CM
7 = Gateway
Example:
IDEA,CCP1S,2

44

Revison: A
July 8, 1998

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

IDEA,GSE1A,7
IDEB,GSE1A,7

1.1.5.16.7 Process File

Thisfile specifies the processes in the system.
Name: process.txt

For mat: Comma ddlimited
Table XI1. Process File For mat

Field Type Contents
Process Name String A unique name for the process
Critica Integer 0 = Not aCritical Process
1 = Critical Process
Example:
CCPPL,0
CCPP2,0

1.1.5.16.8 Resource to Group Map File

Thisfile specifies the Resources contained in each identified group.
Name: res2grp.txt

For mat: Comma ddlimited

Table XI11. Resourceto Group Map File Format

Field Type Contents

Group Name String Name of the Group. Thiswill be one of the groups specified int he
Group File.

Resource Host String Name of the Resource allocated to the Group. Thiswill be one of

Name the resources specified in the Resource File. A given resource will
only be assigned to one group.

Example:
SME Gateways,|DE_GSEO01

SME Gateways,|DE_GSE02
VAB Gateways,|DE_GSEO01

1.1.5.16.9 Process to Subsystem Map File

Thisfile specifies the processes that make up each subsystem.
Name: proc2ss.txt

Format: Comma delimited
Table XIV. Process to Subsystem Map File Format

Field Type Contents

Subsystem String The Name of the Subsystem. Thisis one of the Subsystems

Name identified in the Subsystem File

Process Name String The Name of the Process that is part of the subsystem. Thisisone

45

Revison: A
July 8, 1998

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

| | of the Processes identified in the Process File.

Example:
CCP1S,CCPP1

CCP1S,CCPP2

1.1.5.16.10 Resource to Subsystem Map File

Thisfile specifies the mapping between resources and subsystems.
Name: res?ss.txt

Format: Comma delimited
Table XV. Resor ce to Subsystem M ap File For mat

Field Type Contents

Subsystem String The Subsystem Name. Thisis one of the Subsystems identified in

Name the Subsystem File.

Resource Name | String The Host Name of theresource. Thisis one of the resources
identified in the Resourcefile.

Example:
CCP1S,IDE_CCPO1

GSE1A,IDE_DDPO1
GSE1A,IDE_GSEO01

1.1.5.16.11 Resource to Test Set Map File

Revison: A
July 8, 1998

Thisfile specifies the resources that have been allocated to the test sets. Allocation is defined to be that it may be
used. A given resource can be allocated to multiple Test Sets. It can only be in use by one at any given time.

Name: res2ts.txt

Format: Comma delimited
Table XVI. Resourceto Test Set Map File Format

Field Type Contents
Test Set Name String This matches one of the Test Setsidentified in the Test Set File.
Resource Name | String Thisisthe Host Name of one of the resources identified in the
Resource File.
Example:

IDEA,IDE_CCPO1
IDEA,IDE_CCPO2
IDEA,IDE_DDPO1
IDEA,IDE_DDPO2
IDEA,IDE_GSEO1
IDEA,|IDE_GSEQ2
IDEB,IDE_CCP02
IDEB,IDE_GSEO01

46

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.5.16.12 Group to Test Set Map File

Thisfile specifies the groups that have been allocated to thetest sets. The group can be allocated to multiple test
sets, but can bein use by only onetest set at any given time.

Name: grp2ts.txt

Format: Comma delimited

TableXVII. Group to Test Set Map File Format

Field Type Contents
Test Set name String Thisisthe name of one of the Test Sets specified in the Test Set
File.
Group name String Thisisthe name of one of the Groups specified in the Group File.
Example:

IDEA,HMF Gateways
IDEA,SME Gateways
IDEB,VAB Gateways

1.1.6 SCT Build

The SCT Build isaMicrosoft Access Database. The Database Tables closaly mirror the files built for the SCT (See
Figure 26). As currently populated, a single database containsthe data for all sets. The same design supports
independent databases for each set, or some combination of thetwo. The tables can be grouped into two types: Data
and Relationship. The data tables specify the values for each object in the SCT (subsystems, resources, test sets,
etc.). The Relationship tables specify the relationships between objects (which subsystem executes on which
resource, the resourcesthat belong to a set, etc.). In order to minimize errorsintroduced at data entry, all
relationship tables must contain values already defined in the Data Tables.

47

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Figure 26. SCT Build Data Tables

1.1.6.1 SCT Build Detailed Data Flow
TBD

1.1.6.2 SCT Build System Context Diagram
TBD

1.1.6.3 SCT Build State Definition and State Transition Diagram
TBD

1164 SCT Build Unigue Algorithm Design
TBD

1.1.6.5 SCT Build Development Tools
TBD

48

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.6.6 SCT Build External Interfaces
TBD

1.1.6.7 SCT Build Data Dictionary
TBD

1.1.6.8 SCT Build Message Formats
SCT Build generates no system messages.

1.1.6.9 SCT Build Display Formats
Each table has a spreadshest like data entry table as shown in Figure 27

SRR, v e o

=1 I Y e e o [T 1
I I.

H! ot 1 i & =500 W 172018 003 21
-] 1] 3 bl 1had L1500 LI P 172 018 003 i
H_ = ki Thedl =150 FaiL) 172 0100 30
= =1} A ok 1 b 21503 WD 172 018 003 04
ol— 5 bk 1hiss S50 AT 172 018003 I
={ E i 1 hoell EAET] TR 172 010040 HE
=2 T bk 1 b T =1 AT 172018 003 207
|| E roka hi=d ZASOT Wl 172018 1S e
=] B e Thed el b R 172 010 N 2R
3| | BIF kT o 175089 WA 172018 003 Ha
ol | 11 ek 1 gt SASE) D001 172 A e 051
B = 12 ke 1 and HuE DOz | 103090 000 (g
H_ 13 i ont 211552 o 120 003.0a1
;_ M- el L1553 OO0 73 0dA Ol 8T
= 1o ke et bt 2006 0.0
L 19550 T2 G003 D3z
17 kel i 1 L1570 GEOT 173 A Ol
TH il] e) FATE GEI2 | 1308 O s
160 o | pewgsand 1572 GE0E | §72.0448 003 fal
IO i 1 i L1573 GEOA 173 048 009 ey
21 ik | el ST GEE] | 172048 O 03
22 pia g1 =19TS L0 172048 003 101
T3 bk gl] Z15TH LAY | A7 A 00 0]
. i | e 1 =TT el R E X i X 1 R T
35 ko 1 pepaimel 2 1578 L] e] 1726003143
LR [T T Li5Td L 33 008 o0l i
2T vl 1 pepomi] 172 016 .00 132
IE i 1 peesamiad ki WED1 T2 0AA 003131
F0 i | previimea 2 Li5E]) A7 A 137
0 ke v i 215603 172 06 000 18
ERI R [e TSR CiEH T2 0HA 003 151
A7 i gtk Z1585 173 (18 GO 1A
31X hrriddn 1 S2amn DO | 172 048 Q0 s 172 018 008 £51
- herrkddp s M5t DOz 172048 00d 05T 172018 0= 052
A5 imkeap Rt QOO T3 A OO 8 172 01R (HE 081
36 hmcops pr b Lo e e [1 172 010 008 062
" i 2] T2 0 O R 177 DR ORT
Ctaipesivise] I |] J]

Figure 27. Resour ce Data Entry Table

Once dl datafor aset iscorrect, the set nameis entered in the Current Set table and the Export SCT Macrois
executed. This produces the files for the set which can then be made available to OPS/CM for download to each of
the computers.

49

84K00570-130 Revison: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

1.1.6.10 SCT Build Input Formats
TBD

1.1.6.11 SCT Build Recorded Data
TBD

1.1.6.12 SCT Build Local Storage Requirements and Formats
TBD

1.1.6.13 SCT Build Printer Formats
TBD

1.1.6.14 SCT Build Interprocess Communications (C-to-C Communications)
TBD

1.1.6.15 SCT Build External Interface Calls (e.g., API Calling Formats)
TBD

1.1.6.16 SCT Build Table Formats

The SCT Build generates files used by the online SCT. The specifications for these tables arein the SCT Design
section of the document.

1.1.7 Redundancy Management Test Plan

1171 Test Environment
The equipment necessary for the Thor 3.0 basaline test will include at a minimum:

1 CCP

2 DDP

3 CCWS

4 Ops/CM (optiona)

1.1.7.2 Test Tools

In an effort to coordinate our testing efforts, this CSC can utilize the Ops/CM server in order to make the subsystem
statetrandtionsinto GO as well as theregistration of the processes executing on the platform. The Redundancy
Management executables can be utilized to cycle through the process states. Stubs provided by Redundancy
Management can also be used to achieve the same levd of testing.

1.1.7.3 Test Plan

It istheam of thistest plan to demonsrate the intended functionality/capability of the Redundancy Management

CSC asit pertains to the implementation of Thor 3.0, described within the Subsystem Integrity section of this

document. Thesetestswill add to the current functionality/capability to build upon for Atlas. Thetest casesare

specified towards Subsystem Integrity, however dueto the nature of the modifications necessary to implement Thor

3.0, the testing is not limited to Subsystem Integrity.

1 Demonstrate the ability to register and unregister a process both formally and informally while making the
action known to all SCTsresiding on those platforms participating in the test.

50

84K00570-130
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

2 Demonstrate the ability for a processto transition through all required states while making the action
known to all SCTsresiding on those platforms participating in the test.
3 Demonstrate the ability for a process to report an error and have that error issued by SS| local to the
platform where the error was reported.
1.2 Notes
121 System Event Codes
Table XVIII. System Event Codes
SEC Number Name Sour ce Destination
256 Subsystem Loaded SSI Sl (Master SCT)
257 Subsystem SSI Sl (Master SCT)
Communicating
258 Subsystem Go SSI Sl (Master SCT)
259 Subsystem NoGo SSI Sl (Master SCT)
260 Not Communicating
261 Subsystem Not Loaded | SS Sl (Master SCT)
262 Terminate Sl SSl on Targeted
Platform
263 Switchover Directive S SS on Targeted
Platform
264 New Active S All SS (Local SCT)
393 Subsystem running ORT | S9 S
394 Subsystem not running SSl Sl (Master SCT)
ORT
395 No Packet Received SI-DDP SI-CCP
from GW
396 Standby GSE detected GSENnS S
no poll from Active
GSE
397 GSE reportsno response | GSEnA g
from bus
398 HC not Incremented SI-DDP SI-CCP
399 HC has Decremented SI-DDP SI-CCP
400 Terminate Gracefully Sl SSI on Targeted
Platform
401 Subsystem Loaded Sl (Master SCT) All SSI (Local SCT)
402 Subsystem Sl (Master SCT) All SSI (Local SCT)
Communicating
403 Subsystem in Go Sl (Master SCT) All SSI (Local SCT)
404 Subsystem NoGo Sl (Master SCT) All SSI (Local SCT)
405 Subsystem Not Sl (Master SCT) All SSI (Local SCT)
Communicating
406 Subsystem Not Loaded | SI (Master SCT) All SSI (Local SCT)
408 CPU Utilization Cl Sl (Master SCT)
409 Available Memory Cl Sl (Master SCT)
410 Disk Utilization Cl Sl (Master SCT)
411 Disk Accesses Cl Sl (Master SCT)
412 Disk Errors Cl Sl (Master SCT)
413 Initiadl HC Recelved SI-DDP Sl (Master SCT)

51

84K00570-130

Revison: A

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998
SEC Number Name Source Destination
500 SCT Reinquish Request | Master SCT Acting Master SCT
501 SCT Relinquish Acting Master SCT Master SCT
Response
502 SCT Reinquish Accept | Master SCT Acting Master SCT
1.2.2 Thor Process Table

Table X1 X. Processes Generating Heartbeatsto SSI

CSC Process Critical | Periodic | Rate
Redundancy Management Low Rate No Yes A Hz
Redundancy management Event Driven Yes No TBD
Data Distribution High Rate Yes Yes 100 Hz
Timer Services High Rate Yes Yes 100 Hz
TBD
1.2.3 Message Stack
Table XX. Message Stack
Command Processor
Contact: Brian Hooker
FD Commanding
(FD Write Services)
SW Required:None
Data Required: CVT (can be stale), OLDB (fil
Other HW/SS: Noneto get out of the box, but
CCP, and DDPto ddliver it
Value Add: Standard interface for commandir
Contact: Julia Samson
Command M angement API
SW Required: None
Data Required: SCT to build the packet
Other HW/SS: None
Value Add: Command Authentication
System Event Codes System M essages Command M anagement

SW Required: None
Data Required: SCT
Other HW/SS: None

CORBA* Application Messaging | Purpose:
SW Required: ?7? (AM) Quick/reliable
Data Required: ?7? SW Required: Noneis notification of
Other HW/SS: None required. NRSisOptional | system events

Value Add: Location
Transparency, COTS

and started by ??

Contact: Ken Castner

SW Required: System Message
Process

Data Required: SCT, System
Message Catal og

Other HW/SS: Master CCP -
Router Process, CCWSto see

the message.

Purpose: User Notification of
sgnificant sysem events
Contact: Lynn Higgins

SW Required: Command Management Proces

Data Required: SCT

Other HW/SS: CCPin Go. For Psuedo FD di
DDP must also bein go. For Gateway FDs
gateway must be GO, and activated. No dal
available from gateway unlessthe DDPis(

Value Add: Command Authentication

Contact: Brian Hooker

IPC Service
SW Required: |PC Process
Data Required: None
Other HW/SS: None
Value Add: Provides single queue for both loc
Contact: McMahon (Houston)

Contact: Bob Data Required: None Connectionless Reliable Multicast (RM) Value Add: Automatic recording, Reliable del
McMahon Other HW/SS: None M essaging (CLM) SW Required: RM Process Contact: Steve Davis
Value Add: Thinlayer ontop |SW Required: None (requires SCT to Start)
of sockets Data Required: None Data Required: Loaded SCT,

Contact: Steve Davis Other HW/SS: None Activity, Logical 1D, Network
Value Add: Other HW/SS: None
Contact: McMahon

TCP UDP

52

84K00570-130

(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3)

Revison: A
July 8, 1998

Software Required:
None
Data Reguired: None

Other HW/Subsystems: None | Software Required: Data Required: None
Value Add: None

Other Hardware/Subsystems: None

Thisisthe last page of the Document

53

